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This paper introduces the theme of killing-them-softly between set-theoretic universes. The main theorems show
how to force to reduce the large cardinal strength of a cardinal to a specified desired degree. The killing-them-
softly theme is about both forcing and the gradations in large cardinal strength. Thus, I also develop meta-ordinal
extensions of the hyper-inaccessible and hyper-Mahlo degrees. This paper extends the work of Mahlo to create
new large cardinals and also follows the larger theme of exploring interactions between large cardinals and
forcing central to modern set theory.
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1 Introduction

This paper is, in equal parts, about degrees of large cardinals and about forcing to reduce the degree of a large
cardinal. The focus here are the inaccessible and Mahlo cardinals, relatively small large cardinals in the large
cardinal hierarchy. In the early 20th century, Mahlo found a way to generate new large cardinals [6]. In fact, he
found a way to generate an entire hierarchy of large cardinals which fits between Mahlo and weakly compact. I
was interested in doing this between inaccessible and Mahlo. Set-theorists are already aware of the hierarchy of
degrees of inaccessible cardinals, although it is not explicitly described in the literature beyond hyper-inaccessible.
I provide here explicit definitions (including new words) for the infinite levels of degrees of inaccessible cardinals.
Undertaking this project, one realizes that a notation system for this infinite hierarchy must go beyond the ordinals.
For this reason, I use meta-ordinals to denote the degrees of inaccessible cardinals. We use the symbol � as a
formal syntactic expression for the order type of Ord. We shall see how one can use meta-ordinals to describe this
hierarchy. We were able to do for inaccessible cardinals what Mahlo did for Mahlo cardinals, and even beyond
what he did. Thus, also included in this paper are formal definitions using meta-ordinals for higher degrees of
Mahlo cardinals.

The motivation for the main theorems of this paper was the desire to force to reduce the large cardinal strength
of a cardinal by one degree. In other words, I wanted to travel to a universe where the strength of a given large
cardinal dies, but just a little. There are potentially infinitely many killing-them-softly theorems like the ones
included here. The main theorems in this paper are about softly killing large cardinal strength for degrees of
inaccessible and Mahlo cardinals. In a forthcoming paper, I shall do the same for degrees of measurable and
supercompact cardinals.

2 Degrees of inaccessible cardinals

An inaccessible cardinal κ is an uncountable cardinal which is a regular strong limit cardinal. A cardinal κ is
α-inaccessible if and only if κ is inaccessible and for every β < α, κ is a limit of β-inaccessible cardinals.

The following is the first killing-them-softly result and the main theorem of this section.

Theorem 2.1 If κ is α-inaccessible, then there is a forcing extension where κ is still α-inaccessible, but not
(α + 1)-inaccessible.
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2 E. K. Carmody: Killing them softly

Before the proof of this theorem, is the following Lemma which establishes some basic facts about degrees of
inaccessible cardinals.

Lemma 2.2 (1) A cardinal κ is 0-inaccessible if and only if κ is inaccessible. (2) If κ is α-inaccessible, and
β < α, then κ is also β-inaccessible. (3) A cardinal κ cannot be η-inaccessible, for any η > κ .

P r o o f . The proofs of parts (1) and (2) are trivial. For (3), by way of contradiction, suppose κ is the
least cardinal with the property that κ is (κ + 1)-inaccessible. It follows from the definition that κ is a limit of
κ-inaccessible cardinals. Thus, there is a cardinal β < κ for which β is κ-inaccessible. Since κ is a limit ordinal,
β + 1 < κ , and so by statement (2), β is also (β + 1)-inaccessible. This contradicts that κ is the least cardinal
with this property. It follows from (2) that κ cannot be η-inaccessible for any η ≥ κ + 1. �

And now we proceed to the proof of Theorem 2.1:

P r o o f . Let κ be α-inaccessible. If κ is not (α + 1)-inaccessible, then trivial forcing will give the forcing
extension where κ is α-inaccessible, but not (α + 1)-inaccessible. Thus, assume that κ is (α + 1)-inaccessible,
and we shall find a forcing extension where it is no longer (α + 1)-inaccessible but still α-inaccessible. The idea
of the proof is to add a club, C , to κ which contains no α-inaccessible cardinals, and then force to change the
continuum function to kill strong limits which are not limit points of C . To change the continuum function, we
shall perform Easton forcing.

Easton forcing to change the continuum function works when the GCH holds in the ground model. For our
purposes, we only need the GCH pattern to hold up through κ , by forcing with P, which is an Easton support
iteration of length κ of Add(γ, 1) for regular γ ∈ V Pγ . The forcing P, neither destroys, nor creates, inaccessible
cardinals below κ . Let G ⊆ P be V -generic. Then V and V [G] have the same β-inaccessible cardinals for any
β < κ , and further V [G] |= GCH.

Next, force with C, which will add a club subset to κ , which contains no α-inaccessible cardinals in the forcing
extension. Conditions c ∈ C are closed, bounded, subsets of κ , consisting of infinite cardinals and containing no
α-inaccessible cardinals. The forcing C is ordered by end-extension: d ≤ c if and only if c = d ∩ (sup(c) + 1).
Let H ⊆ C be V [G]-generic, and let C = ⋃

H . Then, clearly C is a club in κ , and it contains no α-inaccessible
cardinals.

We have seen that the forcing, C, adds a new club, C , to κ . It remains to show that C contains unboundedly
many β-inaccessible cardinals, and that C preserves cardinals, cofinalities and strong limits. The new club, C ,
does not contain any ground model α-inaccessible cardinals. The following argument shows that the new club,
C , contains unboundedly many ground model β-inaccessible cardinals, for every β < α. Fix β < α and η < κ .
Let Dη be the set of conditions in C which contain a β-inaccessible γ above η, and which contain a sequence
of inaccessible cardinals, unbounded in γ , witnessing that γ is β-inaccessible. Let us see that Dη is dense in
C. Let c ∈ C, and let γ be the next β-inaccessible above both η and and the maximal element of c. Since γ

is the next β-inaccessible past η and β < α, there are no α-inaccessible cardinals in (η, γ ]. Also, this block,
(η, γ ], contains the tails of all sequences of inaccessible cardinals, which witnesses that γ is β-inaccessible. Let
d = c ∪ ((η, γ ] ∩ Card). Then, d extends c, contains a β-inaccessible above η, and a sequence of inaccessible
cardinals which witness that γ is β-inaccessible. Thus, d ∈ Dη, which shows that Dη is dense in C, and thus
shows that C contains unboundedly many β-inaccessible cardinals. From this fact also follows, that, in the final
extension, κ is still α-inaccessible. Finally, the forcing C preserves cardinals and cofinalities greater than or equal
to κ + 1, forcing over V [G] |= GCH, since |C| = κ<κ = κ .

For β < κ , the forcing, C, is not ≤β-closed, since if β is α-inaccessible, there is a β-sequence of conditions
unbounded in β, but no condition could close the sequence since it would have to include β. However, for every
β < κ , the set Dβ = {d ∈ C : max(d) ≥ β} is dense in C and is ≤β-closed. This is true, since for any β-sequence
of conditions in Dβ , one can close the sequence by taking unions at limits and adding the top point, which cannot
be inaccessible, because it is not regular, since this top point is above β, but has cofinality β. Thus, for every β < κ ,
the forcing, C, is forcing equivalent to Dβ , which is ≤ β-closed. Thus, C preserves all cardinals, cofinalities, and
strong limits. Thus. V [G][H ] |= GCH and we have forced to add C ⊆ κ , club, which contains no α-inaccessible
cardinals.

The last step of the proof is to force over V [G][H ], with E, Easton’s forcing to change the continuum function.
Specifically, let E force 2γ + = δ+, where γ ∈ C and δ is the next element of C past γ +. This forcing preserves all
cardinals and cofinalities [3, pp. 232ff.], and also preserves that κ is inaccessible. However, E does not preserve all
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inaccessible cardinals below κ . In fact, E destroys all strong limits which are not limit points of C . Let K ⊆ E be
V [G][H ]-generic. Since C ′, the set of limit points of C , contains no ground model α-inaccessible cardinals, there
are no α-inaccessible cardinals below κ in V [G][H ][K ]. Thus, κ is not (α + 1)-inaccessible in the final forcing
extension.

Finally since C ′ contains unboundedly many ground model β-inaccessible cardinals (which is the same as the
set of β-inaccessible cardinals in the intermediate extensions since P and C preserve all inaccessible cardinals) for
every β < α. The cardinal κ is still β-inaccessible in V [G][H ][K ]. Thus, in V [G][H ][K ], for every β < α, there
are unboundedly many β-inaccessible cardinals below κ . Thus, κ is still α-inaccessible in the final extension. But,
κ is not (α + 1)-inaccessible in V [G][H ][K ] since C ′ contains no α-inaccessible cardinals. �

If a cardinal κ is κ-inaccessible, then it is defined to be hyper-inaccessible. Therefore, if κ is hyper-inaccessible,
Theorem 2.1 shows how to force to make κ have inaccessible degree exactly α for any fixed α < κ . One can force
to change a hyper-inaccessible cardinal to have maximal degree by forcing to add a club which avoids all degrees
above the desired degree, and then force with Easton forcing to destroy strong limits which are not limit points of
the new club, as in the proof of Theorem 2.1. I’ll state it as a corollary below.

Corollary 2.3 If κ is hyper-inaccessible, then for any α < κ , there exists a forcing extension where κ is
α-inaccessible, but not hyper-inaccessible.

Lemma 2.2 shows that the greatest degree of α-inaccessibility that κ can be is κ-inaccessible. Mahlo began the
investigation of degrees of inaccessible cardinals [5], and fully defined the analgous notions for Mahlo cardinals
[6], and I shall continue his work by formalizing the degrees of inaccessible cardinals in the remainder of this
section. So, how do we proceed beyond hyper-inaccessible cardinals in defining degrees of inaccessibility? By
repeating the process: a cardinal κ is 1-hyper-inaccessible if and only if κ is hyper-inaccessible, and a limit of
hyper-inaccessible cardinals (0-hyper-inaccessible is hyper-inaccessible). That is, κ is 1-hyper-inaccessible if and
only if the set {γ < κ : γ is γ -inaccessible} is unbounded in κ . A cardinal κ is α-hyper-inaccessible if and
only if κ is hyper-inaccessible, and for every β < α, the cardinal κ is a limit of β-hyper-inaccessible cardinals.
A cardinal κ is hyper-hyper-inaccessible, denoted hyper2-inaccessible, if and only if κ is κ-hyper-inaccessible
(hyper0-inaccessible denotes inaccessible). The following theorem shows we have again reached an apparent
roadblock in the hierarchy of inaccessible cardinals.

Theorem 2.4 If κ is α-hyper-inaccessible, then α ≤ κ .

The proof is similar to the proof of Lemma 2.2.
In order to reach higher degrees of inaccessibility past this limit, repeat the process: a cardinal κ is 1-

hyper2-inaccessible if and only if κ inaccessible and a limit of hyper2-inaccessible cardinals. A cardinal κ is
α-hyper2-inaccessible if and only if, for every β < α, the cardinal κ is inaccessible and a limit of β-hyper2-
inaccessible cardinals. By the same argument as in Lemma 2.2, α must be less than or equal to κ in this definition.
And, similarly, a cardinal κ is hyper3-inaccessible if and only if κ is κ-hyper2-inaccessible.

Definition 2.5 A cardinal κ is α-hyperβ -inaccessible if and only if

(1) the cardinal κ is inaccessible, and
(2) for all η < β, the cardinal κ is κ-hyperη-inaccessible, and
(3) for all γ < α, the cardinal κ is a limit of γ -hyperβ -inaccessible cardinals.

Definition 2.5 subsumes the previous definitions of hyper-inaccessible cardinals. For example, 0-hyper0-
inaccessible is just inaccessible, since the second and third parts of the definition are not applicable. If κ is
α-hyper0-inaccessible, then by definition, κ is inaccessible and for all γ < α, the cardinal κ is a limit of γ -hyper0-
inaccessible cardinals, hence κ is α-inaccessible. And if κ is α-inaccessible, then it is inaccessible and a limit
of β-inaccessible cardinals, for every β < α, hence κ is α-hyper0-inaccessible. And, 0-hyper-inaccessible is just
hyper-inaccessible since, from the general definition, this means that κ is inaccessible and for every η < 1, the
cardinal κ is κ-hyperη-inaccessible, i.e., κ is κ-hyper0-inaccessible, hence hyper-inaccessible. In the previous
definition of hyper-inaccessible, it was required that κ be hyper-inaccessible, but this requirement is included in
the second part of Definition 2.5 since this implies that κ is hyper-inaccessible whenever β > 0.
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4 E. K. Carmody: Killing them softly

Definition 2.5 gives a general definition for hyper-inaccessible cardinals. The following theorem shows that a
cardinal κ can be at most hyperκ -inaccessible, using this definition.

Theorem 2.6 A cardinal κ cannot be 1-hyperκ -inaccessible.

The proof is similar to the proof of Lemma 2.2.
Theorem 2.6 shows that in order to continue defining the higher degrees of inaccessible cardinals, we need

to relativize, just as was done before. That is, while a cardinal κ cannot be (κ + 1)-inaccessible, a limit of
κ-inaccessible cardinals, it can be 1-hyper-inaccessible, a limit of hyper-inaccessible cardinals. Here, the word
hyper allows us to define a higher degree. We are in exactly the same situation now. Theorem 2.6 shows that
a cardinal κ cannot be 1-hyperκ -inaccessible, a limit of hyperκ -inaccessible cardinals. Therefore, to define the
higher degrees of inaccessible cardinals, as in Definition 2.5, we need more words.

In order for us to move forward, let us say that a cardinal κ is richly-inaccessible if and only if κ is hyperκ -
inaccessible. The word richly expresses that such a cardinal is brimming with inaccessible cardinals. Now we
can get past the roadblock of Theorem 2.6 because a cardinal κ can be 1-richly-inaccessible, a limit of richly-
inaccessible cardinals, and we can go forever. Each time we get stuck, we just need a new word. Therefore, I have
assigned the first few words to describe the higher degrees of inaccessible cardinals, so that we can keep going.

Before I give the words for the higher degrees, I should like to mention that we do not need a new word each
time we are apparently stuck (and need to relativize). We can re-use the words we already have to be as efficient
as possible. Suppose a cardinal κ is κ-richly-inaccessible. Then we can say that κ is hyper-richly-inaccessible.
We know that κ cannot be (κ + 1)-richly-inaccessible, so we are a little stuck if we want to keep going. But, a
cardinal κ can be 1-hyper-richly-inaccessible, so we can continue. We really only need a brand new word when
we reach an obstacle like in Theorem 2.6.

Below are the new words to describe the higher degrees of inaccessible cardinals, chosen to express qualities
of the Infinite: A cardinal κ is utterly-inaccessible if and only if κ is richlyκ -inaccessible; it is deeply-inaccessible
if and only if κ is utterlyκ -inaccessible; it is truly-inaccessible if and only if κ is deeplyκ -inaccessible; it is
eternally-inaccessible if and only if κ is trulyκ -inaccessible; and it is vastly-inaccessible if and only if κ is
eternallyκ -inaccessible.

I should like to give a couple more examples to show how we can re-use words, and use exponents to express
the higher degrees. A cardinal κ is hyper2-richly-inaccessible if and only if κ is κ-hyper-richly-inaccessible. A
cardinal κ is richly-utterly-inaccessible if and only if κ is hyperκ -utterly-inaccessible. Also, I should like to be
clear that any combination of the words makes senses; a cardinal could even be hyper-richly-utterly-deeply-truly-
eternally-vastly-inaccessible.

Recall that the diagonal intersection of a collection of classes is defined as �α∈I Xα = {κ : κ ∈ ∩α∈I∩κ Xα},
for some index class I . The words hyper, richly, utterly, and so on mark places in the process of defining degrees
of inaccessible cardinals where we take a diagonal intersection over of a collection of classes, where the index
class is Ord. For example, the class of hyper-inaccessible cardinals is the diagonal intersection of the classes of
α-inaccessible cardinals over all α ∈ Ord. And, the class of richly-inaccessible is the diagonal intersection of
the collection of hyperα-inaccessible cardinals over all α ∈ Ord. Thus, our notation system for describing the
classes of degrees of inaccessible cardinals uses meta-ordinals. A meta-ordinal is a formal syntactic expression
for order-types beyond and including Ord. We use the symbol � for the order type of Ord. Then any meta-ordinal
can be expressed in terms of �, just like the role ω plays in Cantor’s normal form for ordinals. Let us only consider
meta-ordinals of the form �α · β + �η · γ + · · · + � · δ + σ where the exponents and coefficients are ordinals.
We require that the normal form of a meta-ordinal has the terms from left to right in decreasing order according
to the exponents.

If s and t are meta-ordinals then the ordering is lexicographical. If the degree on � of the leading term of t
is greater than s, then s < t . If s and t have the same greatest degree of �, then compare the coefficients of the
leading term. If these are the same, compare the next highest powers of � in s and t and so on.

Now that we have these meta-ordinals, we can describe the classes of degrees of inaccessible cardinals in a
uniform way. If η and κ are hyper-inaccessible cardinals then η is in the class of η-inaccessible cardinals and κ

is in the class of κ-inaccessible cardinals. But now I can describe both as being in the class of �-inaccessible
cardinals, which is the diagonal intersection of all classes of α-inaccessible cardinals, for α ∈ Ord. Defined in this
way, the degree of an inaccessible cardinal κ can be described as t-inaccessible for some meta-ordinal t . The only
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restriction being that all of the ordinals in t are less than or equal to κ . In this way, inaccessible cardinals with the
same degree of inaccessibility can be described with the same meta-ordinal.

Definition 2.7 If t is a meta-ordinal with ordinal terms less than κ , then a cardinal κ is t-inaccessible if and
only if κ is inaccessible and for every meta-ordinal s < t having ordinal terms less than κ , the cardinal κ is a limit
of s-inaccessible cardinals.

This definition of t-inaccessibility for a cardinal κ can be extended to include meta-ordinal terms t with just
ordinal terms less than or equal to κ by replacing κ by �. For example, a cardinal κ which is κ-inaccessible is
now called �-inaccessible. A cardinal κ which is � · κ-inaccessible is a hyperκ -inaccessible cardinal which is
called a richly-inaccessible cardinal, or an �2-inaccessible cardinal. Thus,

κ is �-inaccessible if and only if κ is hyper-inaccessible,
κ is �2-inaccessible if and only if κ is richly-inaccessible,

κ is �2 + �-inaccessible if and only if κ is hyper-richly-inaccessible,
κ is �3-inaccessible if and only if κ is utterly-inaccessible,

κ is �3 + �2-inaccessible if and only if κ is richly-utterly-inaccessible,
κ is �4-inaccessible if and only if κ is deeply-inaccessible,
κ is �5-inaccessible if and only if κ is truly-inaccessible,
κ is �6-inaccessible if and only if κ is eternally-inaccessible, and
κ is �7-inaccessible if and only if κ is vastly-inaccessible.

Thus κ is (�7 + �6 + �5 + �4 + �3 + �2 + � + α)-inaccessible if and only if κ is α-hyper-richly-utterly-
deeply-truly-eternally-vastly-inaccessible. Now that we have this uniform notation, we can softly kill any successor
inaccessible degree.

Theorem 2.8 If κ is t-inaccessible, then there is a forcing extension where κ is still t-inaccessible, but not
(t + 1)-inaccessible.

P r o o f S k e t c h . The proof is very similar to the proof of Theorem 2.1. Assume V |= ZFC. Suppose κ ∈ V
is t-inaccessible, where t is a meta-ordinal term with only ordinal terms less than κ . Force with C, the club shooting
forcing, as before. Conditions are closed, bounded subsets of κ such that if c ∈ C then c contains no t-inaccessible
cardinals. The forcing C preserves cardinals and cofinalities. Since ∀γ < κ , the set Dγ = {d ∈ C : max(d) > γ }
is dense, the new club C = ⋃

G ⊆ C is unbounded, where G is V -generic. It follows that C is closed, since it is
unbounded and the conditions are closed, as before. For every s < t , where s is a meta-ordinal term with ordinal
parameters less than κ , the set Ds = {d ∈ C : d contains a block of cardinals up to an s-inaccessible cardinal}
is dense: if c ∈ C, then if η is the least s-inaccessible cardinal above η, then d = c ∪ ([max(c), η] ∩ Card) is
in Ds .

Next force with E: For infinite γ ∈ C , force 2γ + = δ+ where δ is the next element of C past γ +. E destroys
strong limits which are not in C ′ and if η ∈ C ′ is a strong limit, then η remains a strong limit in the final extension.

Since C contains unboundedly many ground model s-inaccessible cardinals for s < t , with a block of cardinals
below them, then in the final extension these cardinals are still s-inaccessible (by a proof by meta-ordinal induction
on s), and so κ is still t-inaccessible. However since all t-inaccessible cardinals below κ are no longer strong
limits, κ is not t + 1-inaccessible. �

3 Mahlo cardinals

This section begins with theorems about Mahlo cardinals, showing that Mahlo cardinals have all the inaccessible
large cardinal properties from the last section. Also, an analogue of the classical notion of greatly Mahlo is defined
for inaccessible cardinals. The classical degrees of Mahlo cardinals are also described, and theorems which softly
kill them. The referee for this paper was very helpful to point out that there has been work done with Mahlo
cardinals which is similar to the theme here. One of the earlier results of this kind is Jensen’s theorem for turning
a Mahlo cardinal into an inaccessible non-Mahlo by shooting a club of singular cardinals through it [4]. William
Boos has extended Jensen’s result for degrees of Mahlo cardinals, in particular the main theorem of § 3, i.e.,
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6 E. K. Carmody: Killing them softly

Theorem 14 is proved by him in Boolean extensions which efface the Mahlo [1]. The author should mention this
fact. There is also similar result about subtle cardinals by Claudia Henrion in “Properties of subtle cardinals” [2].

An inaccessible cardinal κ is Mahlo if and only if the set of inaccessible cardinals below κ is a stationary
subset of κ . A cardinal κ is greatly inaccessible if and only if there is a uniform, normal filter on κ , closed under
the inaccessible limit point operator:

I(X) = {α ∈ X : α is an inaccessible limit point of X}.
A uniform filter on κ has for every β < κ , the set [β, κ) is in the filter, and normal means that the filter is closed
under diagonal intersections �α<κ . The last part of the definition means that if X is in the filter, so is I(X). The
first theorem of this section shows that greatly inaccessible is equivalent to Mahlo.

Theorem 3.1 A cardinal κ is greatly inaccessible if and only if κ is Mahlo.

P r o o f . For the forward implication, suppose κ is Mahlo. Let F be the filter generated by sets of the form
C ∩ I , where C is club in κ , and I is the set of inaccessible cardinals below κ . Note that κ is club in itself, and
κ ∩ I = I , so I ∈ F . Then, the claim is that F is a uniform, normal filter, closed under I. First, if C, D are club
in κ , then C ∩ D is club. Thus, for any clubs C and D, the equation (C ∩ I ) ∩ (D ∩ I ) = (C ∩ D) ∩ I implies
that any set A in the filter, generated by sets of the form C ∩ I , where C is club, is itself a superset of a set of the
form E ∩ I , where E is club in κ . Then, ∅ /∈ F , since the empty set has no non-trivial subsets, hence cannot be
a superset of the form C ∩ I . Next, if A ∈ F , and A ⊆ B, then there is a club C ∈ F such that C ∩ I ⊆ A ⊆ B,
thus B ∈ F , by construction, since F is the filter generated by sets of this form. Third, if A and B are elements
of F , then there are clubs C and D such that C ∩ I ⊆ A, and D ∩ I ⊆ B, so A ∩ B contains (C ∩ D) ∩ I . This
is of the form which generated the filter, thus A ∩ B ∈ F . Also, F is uniform since if b is a bounded subset of κ ,
then κ \ b contains a club E . Thus, E ∩ I ⊆ E ⊆ κ \ b, so κ \ b ∈ F . Since the cardinality of any co-bounded
set is κ , the filter is uniform. It remains to show that F is normal, and closed under the inaccessible limit point
operation. The fact that F is normal, follows easily from the fact that clubs are closed under diagonal intersection.

Finally, for this direction, to show Mahlo implies greatly inaccessible, F is closed under I, since if A ∈ F ,
then I(A) = I ∩ A′ ∩ A, and A′ is club, so I ∩ A′ ∈ F , and A ∈ F , so that I ∩ A′ ∩ A ∈ F , and thus I(A) ∈ F .

For the other direction, if κ is greatly inaccessible, then the uniform, normal filter, F , on κ , contains all the
club subsets of κ . Then, since κ ∈ F , and I(κ) = I ∈ F , and for any club D ⊆ κ , the set D is in F , and their
intersection, D ∩ I , is in F , hence D ∩ I is non-empty. Thus I is stationary in κ , and thus κ is Mahlo. �

Theorem 3.2 below shows that a Mahlo cardinal has every degree of inaccessibility defined previously.
However, a cardinal being every degree of inaccessibility is not equivalent to the cardinal being Mahlo. Theorem
3.3 separates the two notions with forcing to destroy the Mahlo property of a cardinal, while preserving that the
cardinal has every inaccessible degree.

Theorem 3.2 If κ is Mahlo, then for every meta-ordinal t having ordinal terms less than κ , the cardinal κ is
a t-inaccessible cardinal (as in Definition 2.7).

P r o o f . If κ is Mahlo, then κ is greatly inaccessible, by Theorem 3.1. Hence, there is a uniform, normal
filter F on κ , closed under the inaccessible limit point operation. Since κ ∈ F , and I(κ) = I ∈ F , all sets of
α-inaccessible cardinals for α < κ , below κ , are in F . And, since F is normal, all sets of hyper inaccessible
degrees below κ , which are all definable from diagonal intersection, are in F . Hence, every set of inaccessible
cardinals definable from I, I, and �, in the manner of the previous section, by closing under these operations, is
unbounded in κ . �

Theorem 2.1 shows that any cardinal which is at least α-inaccessible in the ground model, for some α, can
be killed softly to be no more than α-inaccessible in a forcing extension. Therefore, if κ is α-inaccessible, then
there is a forcing extension where κ is α-inaccessible, but not Mahlo. The following theorem shows that if κ is
Mahlo, there is a forcing extension where κ is no longer Mahlo but still any degree of inaccessibility defined in
the previous section.

Theorem 3.3 If κ is Mahlo, then there is a forcing extension where κ is t-inaccessible for every meta-ordinal
term t with ordinals less than κ , but where κ is not Mahlo.
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P r o o f . Let κ be a Mahlo cardinal. Let C be the forcing to add a club, C = ⋃
G, where G ⊆ C is V -

generic, which contains no inaccessible cardinals. The argument in Theorem 2.1 shows that C preserves cardinals,
cofinalities, and all inaccessible cardinals in Vκ . In fact, C does not change Vκ at all, V V [G]

κ = Vκ . Since Vκ has
all the sets needed to define that κ is α-inaccessible, for cardinals γ < κ , being α-inaccessible is absolute to Vκ .
Hence C preserves all inaccessible degrees. Hence κ is still every possible inaccessible degree. However, κ is no
longer Mahlo in V [G], since C ∩ I = ∅. �

Just as there are infinitely many degrees of inaccessible cardinals, there are infinitely many Mahlo degrees. One
might be tempted to define the next degree of Mahlo to be a Mahlo limit of Mahlo cardinals, exactly as was done
with the degrees of inaccessible cardinals, and indeed there is a hierarchy of Mahlo cardinals that can be defined
this way. However, there is a more powerful and appropriate way to define the degrees of Mahlo cardinals which
is much stronger. The definition of Mahlo cardinal is primarily about stationary sets, and the degrees of Mahlo
cardinals are classically defined by stationary sets. Thus, the classical degrees of Mahlo cardinals are defined
using stationary sets. Namely, an infinite cardinal κ is 1-Mahlo if and only if κ is Mahlo, and the set of Mahlo
cardinals below κ is stationary in κ . In general, κ is α-Mahlo if and only if κ is Mahlo, and for every β < α, the
set of β-Mahlo cardinals below κ is stationary in κ . The degrees of Mahlo cardinals go on forever, just as the
degrees of inaccessible cardinals; if κ is κ-Mahlo, then κ is hyper-Mahlo, and so on.

The main theorem of this section will show how to force to change degrees of Mahlo cardinals by adding a
club avoiding a stationary set of cardinals of a certain Mahlo degree, while preserving all stationary subsets of
cardinals of a lesser Mahlo degree. A modification of the forcing C, to add a club, from the proof of Theorem 2.1,
will work. We shall need the following lemma.

Lemma 3.4 Let κ be an inaccessible cardinal and let S ⊆ κ be an unbounded subset of κ which contains the
singular cardinals. Then QS, the forcing to add a club C ⊂ S, preserves cardinals and cofinalities, and for all
β < κ , the forcing QS has a ≤ β-closed dense subset.

P r o o f . Conditions c ∈ QS are closed, bounded subsets of S. The ordering on QS is end-extension: d ≤ c
if and only if c = d ∩ (sup(c) + 1). Let G ⊆ QS be V -generic, and let C = ⋃

G. Then C ⊆ S is club in κ . The
proof is the same as in Theorem 2.1. �

Given two sets A and B, it is said that A reflects B if for some δ ∈ B, the set A ∩ δ is stationary in δ. The
following Lemma shows that if A does not reflect in B, then the forcing to add a club avoiding B will preserve
the stationary subsets of B.

That is, if we force to add a club which avoids the strong set, then the stationarity of the weak set and all of its
stationary subsets will be preserved if the strong set does not reflect in the weak set. In the proof of the theorem,
the strong set will be Mahlo cardinals of a fixed degree, and the weak set will be the set of Mahlo cardinals of a
lesser degree which are not of the fixed degree.

Lemma 3.5 If κ is Mahlo, and the sets A and B partition the inaccessible cardinals below κ , where A does not
reflect in B, then the forcing to add a club avoiding A will preserve all the stationary subsets of B. Furthermore,
the forcing does not add sets to Vκ .

P r o o f . Suppose S ∈ V is a stationary subset of B. Let P be the forcing to add a club through the complement
of A, and let Ė be a name for a club subset of κ , and p a condition which forces that E is club in κ . Let δ ∈ S be
such that p ∈ Vδ and 〈Vδ,∈, A ∩ δ, B ∩ δ, Ė ∩ Vδ〉 is an elementary substructure of 〈Vκ ,∈, A, B, Ė〉. We can find
such δ ∈ S, since the set of δ giving rise to elementary substructures is club and S is stationary. Since δ ∈ B, by the
assumption, there is a club set c ⊆ δ, containing no points from A. Now we construct a pseudo-generic δ-sequence
of conditions below δ, deciding more and more about Ė , using the elements of c to guide the construction. Build
a descending sequence of conditions 〈cα : α < δ〉 in P ∩ Vδ , below p, and given cα , choose cα+1 to force a
specific ordinal above α into Ė with sup(cα+1) ∈ c, and at limits λ, let cλ = (

⋃
α<λ cα) ∪ {sup(

⋃
α<λ cα}. Notice

that sup(
⋃

α<λ cα) ∈ c, since c is closed, and therefore is not in A, so that cλ is a condition for limit ordinals λ, in
the construction. That is, we can get through the limit steps below δ, precisely because c contains no points from
A. Let c∗ = (

⋃
α<δ cα) ∪ {δ}. Then c∗ ⊆ δ is club in δ that decides Ė in a way that is unbounded in δ. Thus, c∗ is

a condition which forces Ė meets S. Thus, S must still be stationary in the extension. Finally, this club shooting
forcing does not add sets to Vκ by Lemma 3.4. �
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8 E. K. Carmody: Killing them softly

The following is the main killing-them-softly result of this section; this result had been proved earlier by Boos
[1]:

Theorem 3.6 If κ is α-Mahlo, then there is a forcing extension where κ is α-Mahlo, but not (α + 1)-Mahlo.

P r o o f . Let α < κ be fixed. Suppose κ is α-Mahlo. Let A be the set of α-Mahlo cardinals below κ . Note
that A does not reflect in its complement in the inaccessible cardinals, for if, for some β < κ , inaccessible, in the
complement of A, the set of α-Mahlo cardinals below β is stationary, then β is (α + 1)-Mahlo, hence α-Mahlo,
hence β ∈ A. But, β was supposed to be an inaccessible cardinal in the complement of A. Thus, A does not reflect
in the set of inaccessible cardinals in its complement.

If κ is not (α + 1)-Mahlo, then force trivially to show the result. Let C be the notion of forcing which adds a
club C through the complement of A. Conditions are ordered by end-extension. Then by Lemma 3.4 the forcing C

preserves truth in Vκ , preserves cardinals, cofinalities, and adds a club to κ , disjoint from A. Since A is no longer
stationary in κ , it is no longer (α + 1)-Mahlo. Since A contains no clubs, κ \ A is stationary. Thus, by Lemma
3.5, since A does not reflect in its complement, all stationary subsets of κ \ A are preserved. Thus, I only need
to show that ∀β < α the set Tβ = { δ < κ : δ is β-Mahlo but not (β + 1)-Mahlo } is stationary. Let C ⊆ κ be
club. Let δ be least in C ′ which is β-Mahlo. Then C ∩ δ is club in δ so that (C ∩ δ)′ ∩ δ = C ′ ∩ δ is club in δ and
contains no β-Mahlo cardinals by the minimality of δ. Thus δ is not (β + 1)-Mahlo. Thus Tβ is stationary. Thus
the stationarity of Tβ is preserved. Thus κ is still α-Mahlo. �

As in the previous section for inaccessible cardinals (Definition 2.5), we can define the higher degrees of Mahlo
cardinals:

Definition 3.7 A cardinal κ is α-hyperβ -Mahlo if and only if

(1) the cardinal κ is Mahlo, and
(2) for all η < β, the cardinal κ is κ-hyperη-Mahlo, and
(3) for all γ < α, the set of γ -hyperβ -Mahlo cardinals below κ is stationary in κ .

Also, as in Definition 2.7 for degrees of inaccessible cardinals, we can define the classes of degrees of Mahlo
cardinals uniformly by using meta-ordinals:

Definition 3.8 If t is a meta-ordinal term having only ordinals less than κ , then a cardinal κ is t-Mahlo if and
only if for every meta-ordinal term s < t having only ordinals less than κ , the set of s-inaccessible cardinals is
stationary in κ .

Theorem 3.9 If κ is t-Mahlo, where t is a meta-ordinal term having parameters less than κ , then there is a
forcing extension V [G] where κ is t-Mahlo, but not (t + 1)-Mahlo.

P r o o f S k e t c h . The proof is a generalization of the proof of Theorem 3.6. The proof is to add a club
C ⊆ κ which avoids the t-Mahlo cardinals below κ . �

Finally, we can go beyond to define the higher degrees of Mahlo cardinals, just as we did with the higher
degrees of inaccessible cardinals, using the new words and meta-ordinals:

κ is �-Mahlo if and only if κ is hyper-Mahlo,

κ is �2-Mahlo if and only if κ is richly-Mahlo,

κ is �3-Mahlo if and only if κ is utterly-Mahlo,

κ is �4-Mahlo if and only if κ is deeply-Mahlo,

κ is �5-Mahlo if and only if κ is truly-Mahlo,

κ is �6-Mahlo if and only if κ is eternally-Mahlo, and
κ is �7-Mahlo if and only if κ is vastly-Mahlo.
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