Review for Multi II Spring 2019

1. Compute the divergence and curl of

$$\mathbf{F}(x, y, z) = \langle 3x + 2z^2, \frac{x^3y^2}{z}, -(z - 7x) \rangle$$

2. Is the following vector field conservative?

$$\mathbf{F} = \langle 4y^2 + \frac{3x^2y}{z^2}, 8xy + \frac{x^3}{z^2}, 11 - \frac{2x^3y}{z^3} \rangle$$

For problems 3-5, write down a vector equation which describes the surface (or set of parametric equations).

- 3. The plane 7x + 3y + 4z = 15.
- 4. The cylinder $x^2 + y^2 = 5$ for $-1 \le z \le 6$.
- 5. The portion of the sphere of radius 6 with $x \ge 0$.
- 6. Determine the surface area of the plane 2x + 3y + 6z = 9 that is inside the cylinder $x^2 + y^2 = 7$.
- 7. Evaluate $\int \int_S z + 3y x^2 dS$ where S is the part of the $z = 2 3y + x^2$ that lies over the triangle in the xy-plane with vertices (0,0), (2,0) and (2,-4).
- 8. Calculate the line integral

$$\int x^2 y \ dx + (y-3) \ dy$$

where C is a rectangle with vertices (1,1),(4,1),(4,5) and (1,5) oriented counterclockwise.

9. Calculate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F} = \langle xy, x^2 + y^2 + z^2, yz \rangle$$

and C is the boundary of the parallelogram with vertices (0,0,1), (0,1,0), (2,0,-1) and (2,1,-2).

10. Calculate the surface integral $\int \int_S \mathbf{F} \cdot d\mathbf{S}$, where S is the cylinder $x^2 + y^2 = 1$, with $0 \le z \le 2$, including the circular top and bottom, and $\mathbf{F} = \langle \frac{x^3}{3} + yz, \frac{y^3}{3} - \sin(xz), z - x - y \rangle$.

1