Set Theory: from Cantor to Cohen and beyond

Math Club Fordham University April 30, 2019

Erin Carmody

Outline

- 1. Transcendental numbers exist. (Cantor)
- 2. Cantor's Theroem.
- 3. WO \equiv AC. (Zermelo)
- 4. Faith in Large Cardinals.
- 5. The Independence of CH. (Cohen)
- 6. Degrees of inaccessible cardinals.
- 7. Killing Them Softly Theorems. (Carmody)

The real numbers are uncountable (proof of the existence of transcendental numbers).

Proof: We will show that the set (0,1) is uncountable (and hence so is \mathbb{R} , since they have the same size).

Suppose, to the contrary, that (0,1) is countable. Then we can write these numbers on a countable list:

$$\{s_1,s_2,s_3,\dots\}$$

We will find a number not on the list by diagonalizing:

$$t=0.d_1d_2d_3\ldots d_n\ldots$$

where

 d_1 is different from s_{11}

 d_2 is different from s_{22}

 d_n is different from s_{nn}

:

Then the *n*th digit of t is different from the *n*th digit of s_n .

Thus, $t \neq s_k$ for any k.

Thus $t \in (0,1)$, but t is not on the list.

Contradiction.

Thus, the reals are uncountable.

(And since the algebraic numbers are countable, there must be uncountably many transcendental numbers, hence they exist.)

Second Theorem (Cantor)

Theorem: Every set X has cardinality less than its power set P(X).

Proof: Let f be a function from X into P(X)

$$f: X \to P(X)$$
.

The function cannot be a one-to-one map onto P(X). For, consider the set $Y = \{x \in X \mid x \notin f(x)\}$.

Suppose Y is in the range of f. Then there is some z for which f(z) = Y.

Then $z \in Y \iff z \notin Y$, a contradiction.

Ordinals

$$\omega = \{1, 2, 3, \dots\}$$

$$\dots >$$

$$\omega + 1 = \{1, 2, 3, \dots \omega\}$$

$$\dots \dots > \dots$$

$$\omega + 2 = \{1, 2, 3, \dots \omega, \omega + 1\}$$
$$\dots > \dots$$

Ordinals

$$\omega \cdot 2 = \{1, 2, 3, \dots \omega, \omega + 1, \omega + 2, \omega + 3, \dots\}$$
$$\dots \cdots > \dots > \dots$$

Ordinals

Third Theorem (Zermelo)

The Axiom of Choice is equivalent to the Well-Ordering Principle.

Third Theorem (Zermelo)

 (\Rightarrow) Let A be a nonempty set. We would like to enumerate A. Pick any element of A to be the first element a_0 .

If $a_0, a_1, \ldots, a_{\alpha}$ have been chosen, choose $a_{\alpha} \in A - \{a_0, a_1, \ldots, a_{\alpha}\}$.

If λ is a limit ordinal and $\{a_{\beta} \mid \beta < \lambda\}$ has been made from A, choose $a_{\lambda} \in A - \{a_{\beta} \mid \beta < \lambda\}$.

Let θ be the least ordinal such that $A = \langle a_{\alpha} | \alpha < \theta \rangle$. Thus, A has been enumerated by θ .

Third Theorem (Zermelo)

 (\Leftarrow) Suppose that every set can be well-ordered. Let S be a family of non-empty sets.

Let $\cup S$ be the set of elements of each of the families in S. Well order $\cup S$ and thus every family in S has been well ordered.

Let f(X) be the least element of X for every $X \in S$. Thus, f is a choice function for the family S.

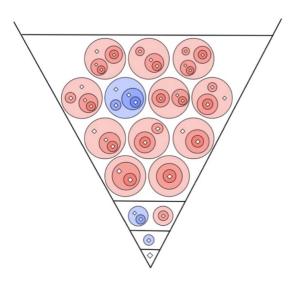


Figure: Hierarchy of Sets

$V_{\kappa} \models ZFC$

An inaccessible cardinal is an uncountable, regular, strong limit cardinal.

An uncountable version of ω .

 V_{ω} almost satisfies the axioms of ZFC.

Except for the axiom of infinity.

$$V_{\kappa} \models \mathsf{ZFC}$$

Theorem: If κ is inaccessible $V_{\kappa} \models \mathsf{ZFC}$.

For every limit ordinal α , the set V_{α} satisfies: empty set, extensionality, pairing, union, foundation, and choice.

If $\alpha > \omega$, then $V_{\alpha} \models \infty$.

Since κ is a strong limit, V_{κ} satisfies the power set axiom.

The most difficult part: showing V_{κ} satisfies the replacement axiom.

We cannot prove inaccessible cardinals exist.

Corollary: We cannot prove the existence of inaccessible cardinals, if ZFC is consistent.

Proof: Suppose we could prove that an inaccessible cardinal κ exists. Then, by the theorem, $V_{\kappa} \models \mathsf{ZFC}$. So, we have proved the existence of a set model of ZFC . Thus, we would have proved, using the axioms of ZFC , that ZFC is consistent. This contradicts $\mathsf{G\ddot{o}del's}$ second incompleteness theorem. Thus, we cannot prove that inaccessible cardinals exist.

Forcing Conditions

Let $(\mathbb{P}, <)$ be a nonempty partially ordered set in M (the *ground model*, a transitive model of ZFC)

 $(\mathbb{P},<)$ is a notion of forcing and the elements of \mathbb{P} are forcing conditions.

For any $p, q \in \mathbb{P}$, we say p is stronger than q if p < q.

If there exists an $r \in \mathbb{P}$ such that $r \leq p$ and $r \leq q$, then p and q are *compatible*.

Dense Sets

A set $D \subset \mathbb{P}$ is *dense* in \mathbb{P} if for every $p \in \mathbb{P}$ there is a condition $q \in D$ which is stronger than p.

Filters

A set $F \subset \mathbb{P}$ is a *filter* on \mathbb{P} if

F is nonempty; if $q \le p$ and $p \in F$, then $q \in F$; any two elements of F are compatible.

Generic Sets

A set $G \subset \mathbb{P}$ is *generic* over M if G is a filter, and if $D \in M$ is dense in \mathbb{P} , then $G \cap D \neq \emptyset$.

(Proof Sketch)

Let \mathbb{P} be defined as follows:

 $p \in \mathbb{P} \iff p$ is a finite binary sequence.

For $p, q \in \mathbb{P}$, the condition p is stronger than q if p extends q:

$$p < q \iff p = q^{\cap}s$$

(p and q are compatible if p < q or q < p)

Suppose $(\mathbb{P}, <) \in M$, the ground model.

Let $G \subset \mathbb{P}$ be generic over M.

Let $f = \bigcup G$.

Since G is a filter, f is a function because the conditions in a filter are compatible.

For every $n \in \omega$, the following set are dense in \mathbb{P} :

$$D_n = \{ p \in \mathbb{P} : n \in dom(p) \}$$

Hence, every D_n meets G, so the domain of f is ω .

We claim that the function $f: \omega \to \{0,1\}$ is not in M.

For every 0-1 function g in M., let

$$D_g = \{ p \in \mathbb{P} \mid p \not\subset g \}$$

Each of these sets is dense in \mathbb{P} , and hence meets G.

It follows that $f \neq g$ for any $g \in M$.

We just added a Cohen generic real.

BIG BLACK BOX:

$$M[G] \models ZFC$$

Independence of CH and more

Theorem (Cohen): If $V \models ZFC$, then there is a forcing extension V[G] that satisfies $|\mathbb{R}| > \aleph_1$.

Theorem (Easton): If $V \models GCH$, then there is a forcing extension where the continuum function f can be almost anything as long as it satisfies the following for regular κ and λ :

$$f(\kappa) > \kappa$$
, $f(\kappa) \le f(\lambda)$ for $\kappa \le \lambda$, and $\mathrm{cf}f(\kappa) > \kappa$.

Killing Them Softly

Suppose $\kappa \in V$ is a cardinal with large cardinal property A. The main idea is to find a notion of forcing $\mathbb P$ such that if $G \subseteq \mathbb P$ is V-generic, the cardinal κ no longer has property A in V[G], but has as many of its other large cardinal properties as possible. The main theorems show how to do this for a class of cardinals.

Degrees of Inaccessible Cardinals

 κ is *1-inaccessible* if and only if κ is an inaccessible cardinal and a limit of inaccessible cardinals

 κ is α -inaccessible if and only if κ is inaccessible and for every $\beta < \alpha$, the cardinal κ is a limit of β -inaccessible cardinals

Killing Inaccessible Cardinals Softly

Theorem: If κ is α -inaccessible then there is a forcing extension where κ is still α -inaccessible, but not $(\alpha+1)$ -inaccessible.

Hyper-inaccessible Cardinals

A cardinal κ is *hyper-inaccessible* if and only if κ is κ -inaccessible.

Hyper-inaccessible Cardinals

 κ is 1-hyper-inaccessible if and only if κ is inaccessible and a limit of hyper-inaccessible cardinals

 κ is α -hyper-inaccessible if and only if κ is inaccessible and $\forall \beta < \alpha$ is a limit of β -hyper-inaccessible cardinals

 κ is $\textit{hyper}^2\text{-inaccessible}$ if and only if κ is $\kappa\text{-hyper-inaccessible}$

Meta-Ordinal Notation

If κ is hyper-inaccessible denote κ as Ω -inaccessible.

If κ is 1-hyper-inaccessible denote κ as $(\Omega + 1)$ -inaccessible.

:

If κ is α -hyper-inaccessible denote κ as $(\Omega + \alpha)$ -inaccessible.

:

Meta-Ordinal Notation

If κ is κ -hyper-inaccessible denote κ as $\Omega \cdot 2$ -inaccessible.

:

If κ is hyper³-inaccessible denote κ as $\Omega \cdot 3$ -inaccessible.

If κ is hyper^{κ}-inaccessible denote κ as Ω^2 -inaccessible.

:

Degrees of Inaccessible Cardinals... in words

```
\kappa is richly-inaccessible \iff \kappa is hyper -inaccessible
\kappa is utterly-inaccessible \iff \kappa is richly -inaccessible
\kappa is deeply-inaccessible \iff \kappa is utterly -inaccessible
\kappa is truly-inaccessible \iff \kappa is deeply -inaccessible
\kappa is eternally-inaccessible \iff \kappa is truly \kappa-inaccessible
\kappa is vastly-inaccessible \iff \kappa is eternally -inaccessible
```

Meta-Ordinal Notation

```
\kappa is \Omega-inaccessible \iff \kappa is hyper-inaccessible
\kappa is \Omega^2-inaccessible \iff \kappa is richly-inaccessible
\kappa is \Omega^3-inaccessible \iff \kappa is utterly-inaccessible
\kappa is \Omega^4-inaccessible \iff \kappa is deeply-inaccessible
\kappa is \Omega^5-inaccessible \iff \kappa is truly-inaccessible
\kappa is \Omega^6-inaccessible \iff \kappa is eternally-inaccessible
\kappa is \Omega^7-inaccessible \iff \kappa is vastly-inaccessible
```

Meta-Ordinal Notation

$$\kappa$$
 is $(\Omega^7 + \Omega^4 \cdot 3 + 1)$ -inaccessible \Leftrightarrow κ is 1-deeply·3-vastly-inaccessible

References

Apter/Gitik, *The least measurable can be strongly compact and indestructible.* The Journal of Symbolic Logic, Vol. 63, No. 4, 1404-1412, Dec., 1998.

Carmody, Killing them softly: inaccessible and Mahlo Cardinals Mathematical Logic Quarterly, Vol

Easton, Powers of regular cardinals. Ann. Math. Logic 1, 139-178, MR 42 #4392, 1970.

Hamkins, *Forcing and Large cardinals*, based on CUNY set theory lecture 2004.

Hamkins, *Destruction or preservation: as you like it.* Ann. Pure Appl. Logic, vol. 91, iss. 2-3, pp. 191-229, 1998.

Hamkins, Extensions with the approximation and cover properties have no new large cardinals. Fundamenta Mathematicae 180(3):257-277, 2003.

References

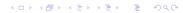
Hamkins 5, A multiverse perspective on the axiom of constructibility Infinity and Truth, Vol. 25, 2013.

Hamkins, Shelah. *Superdestructibility: a dual to Laver's indestructibility.* Journal of Symbolic Logic, vol. 63, iss. 2, pp. 549-554, 1998.

Jech, Set Theory. Third Millenium Edition, Revised and Expanded, Springer Monographs in Mathematics, p. 120, 2002. Jensen, Kunen, Some combinatorial properties of L and V. Unpublished, 1969.

Kanamori, *The Higher Infinite*. Springer Monographs in Mathematics, 2nd edition, 2003.

Magidor, *A Study on Identity Crises*. Ann. pure appl. logic, vol. 10, pp. 33-57, 1976.



Thank you!